On the existence of Pettis integrable functions which are not Birkhoff integrable

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which Powers of Holomorphic Functions Are Integrable?

Question 1. Let f(z1, . . . , zn) be a holomorphic function on an open set U ⊂ C. For which t ∈ R is |f |t locally integrable? The positive values of t pose no problems, for these |f |t is even continuous. If f is nowhere zero on U then again |f |t is continuous for any t ∈ R. Thus the question is only interesting near the zeros of f and for negative values of t. More generally, if h is an inve...

متن کامل

The Last Integrable Case of Kozlov-treshchev Birkhoff Integrable Potentials

The integrability of this system was conjectured in [16] and in the book of V.V. Kozlov [17]. This system appears first in the classification of Birkhoff integrable systems by Kozlov and Treshchev [16]. The classification involves systems with exponential interraction with sufficient number of integrals, polynomial in the momenta. The classification gives necessary conditions for a system with ...

متن کامل

Banach-valued Henstock-kurzweil Integrable Functions Are Mcshane Integrable on a Portion

It is shown that a Banach-valued Henstock-Kurzweil integrable function on an m-dimensional compact interval is McShane integrable on a portion of the interval. As a consequence, there exist a non-Perron integrable function f : [0, 1] −→ and a continuous function F : [0, 1] −→ such that

متن کامل

Convergence Theorems for Set-valued Denjoy-pettis Integrable Mappings

In this paper, we introduce the Denjoy-Pettis integral of set-valued mappings and investigate some properties of the set-valued Denjoy-Pettis integral. Finally we obtain the Dominated Convergence Theorem and Monotone Convergence Theorem for set-valued DenjoyPettis integrable mappings.

متن کامل

Convergence of Banach valued stochastic processes of Pettis and McShane integrable functions

It is shown that if (Xn)n is a Bochner integrable stochastic process taking values in a Banach lattice E, the convergence of f(Xn) to f(X) where f is in a total subset of E∗ implies the a.s. convergence. For any Banach space E-valued stochastic process of Pettis integrable strongly measurable functions (Xn)n, the convergence of f(Xn) to f(X) for each f in a total subset of E∗ implies the conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2004

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-04-07665-8